
NetWatch
Joshua Wise
Jacob Potter



Who really runs code 
on your machine?

• Your program

• The kernel, when an interrupt happens

• ... and that’s it, right?



Is that all?

• What if you plug in a USB keyboard to 
Pebbles?

• Who controls the fans?

• Chipset bugfixes (what do those BIOS 
patches actually do?)



Introducing SMM

• Magic pin from the northbridge to the 
processor

• Acts like a completely separate CPU

• Hidden space in memory

• Introduced in 386SL, more widely in 486



Chain of events

• Something happens in northbridge

• Trap on certain devices, timer, I/O range

• SMI# signal goes low

• CPU acknowledges with SMI_ACT#

• “Uh oh...”, saves all state, vectors to...



That other memory...

• You can see all of RAM from ring 0, right?

• What about video RAM? What about the 
DRAM underneath?

• All controlled by northbridge - normally 
redirected, but can be changed on the fly



Chain of Events

• Starts executing code left behind by BIOS

• 16-bit flat “unreal mode”, cached segment 
selectors

• Saved state is in SMRAM segment too

• Can enter protected mode, turn on 
paging...



Blue Pill

• RSM instruction restores most state: CR0, 
CR3, segment descriptor caches, normal 
boring registers

• Undetectable, except for deliberate side 
effects, and a mysterious jump in the timers



Who’s afraid of the big, 
bad D_LCK?

• Northbridge registers also give access to 
SMRAM in “normal” mode

• Lets BIOS put things there in the first place

• One-way lockout bit to stop people like us

• SMM makes a great place for a rootkit

• But it’s not set in older machines



What are we doing?

• Introducing NetWatch

• What can you do with a server that won’t 
boot enough to give you SSH?

• Expensive network KVM?

• Drive over with a keyboard?

• We can control anything with SMM...



How hard can it be?

• Get code into SMM

• Access video RAM and registers, network 
card, keyboard, mouse...

• And plenty of glue



Components

• SMM loader: runs from GRUB before 
kernel

• I/O traps, network card interception

• TCP/IP: lwIP

• VNC?



How much code?

• SMM loader: 200 - 300 C, 50-60 asm

• I/O traps: 400 - 600 C

• TCP/IP: lwIP: 10k of lwIP, plus 100 - 200 C 
of glue

• VNC: 200 - 400 C



Current Status

• Running in SMM, trapping some I/O

• Can reboot a running Linux/Pebbles system 
on certain key presses

• Works “concurrently” with any running 
kernel

• Breaks ACPI





http://netwatchdev.blogspot.com/

http://netwatchdev.blogspot.com
http://netwatchdev.blogspot.com

